Averaged Mappings and the Gradient-Projection Algorithm
نویسنده
چکیده
It is well known that the gradient-projection algorithm (GPA) plays an important role in solving constrained convex minimization problems. In this article, we first provide an alternative averaged mapping approach to the GPA. This approach is operator-oriented in nature. Since, in general, in infinite-dimensional Hilbert spaces, GPA has only weak convergence, we provide two modifications of GPA so that strong convergence is guaranteed. Regularization is also applied to find the minimum-norm solution of the minimization problem under investigation.
منابع مشابه
Strong convergence of modified gradient-projection algorithm for constrained convex minimization problems
In this article, a modified gradient-projection algorithm (GPA) is introduced, which combines Xu’s idea of an alternative averaged mapping approach to the GPA and the general iterative method for nonexpansive mappings in Hilbert space introduced by Marino and Xu. Under suitable conditions, it is proved that the strong convergence of the sequences generated by implicit and explicit schemes to a ...
متن کاملA Hybrid Gradient-Projection Algorithm for Averaged Mappings in Hilbert Spaces
It is well known that the gradient-projection algorithm GPA is very useful in solving constrained convex minimization problems. In this paper, we combine a general iterative method with the gradient-projection algorithm to propose a hybrid gradient-projection algorithm and prove that the sequence generated by the hybrid gradient-projection algorithm converges in norm to a minimizer of constrain...
متن کاملA General Iterative Method for Constrained Convex Minimization Problems in Hilbert Spaces
It is well known that the gradient-projection algorithm plays an important role in solving constrained convex minimization problems. In this paper, based on Xu’s method [Xu, H. K.: Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150, 360-378(2011)], we use the idea of regularization to establish implicit and explicit iterative methods for finding the approximate ...
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملFinding Best Approximation Pairs Relative to a Convex and Prox-Regular Set in a Hilbert Space
We study the convergence of an iterative projection/reflection algorithm originally proposed for solving what are known as phase retrieval problems in optics. There are two features that frustrate any analysis of iterative methods for solving the phase retrieval problem: nonconvexity and infeasibility. The algorithm that we developed, called Relaxed Averaged Alternating Reflections (RAAR), was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Optimization Theory and Applications
دوره 150 شماره
صفحات -
تاریخ انتشار 2011